High glucose-induced oxidative stress causes apoptosis in proximal tubular epithelial cells and is mediated by multiple caspases.

نویسندگان

  • David A Allen
  • Steven Harwood
  • Mira Varagunam
  • Martin J Raftery
  • Muhammad M Yaqoob
چکیده

Diabetic nephropathy is the leading cause of end-stage renal disease in the Western world. Poor glycemic control contributes to the development of diabetic nephropathy, but the mechanisms underlying high glucose-induced tissue injury are not fully understood. In the present study, the effect of high glucose on a proximal tubular epithelial cell (PTEC) line was investigated. Reactive oxygen species (ROS) were detected using the fluorescent probes dichlorofluorescein diacetate, dihydrorhodamine 123, and 2,3-diaminonapthalene. Peroxynitrite (ONOO-) generation and nitrite concentrations were increased after 24 h of high glucose treatment (P<0.05). LLC-PK1 cells exposed to high D-glucose (25 mM) for up to 48 h had increased DNA fragmentation (P<0.01), caspase-3 activity (P<0.001), and annexin-V staining (P<0.05) as well as decreased expression of XIAP when compared with controls (5 mM D-glucose). The ONOO- scavenger ebselen reduced DNA fragmentation and caspase-3 activity as well as the high glucose-induced nitrite production and DCF fluorescence. High glucose-induced DNA fragmentation was completely prevented by an inhibitor of caspase-3 (P<0.01) and a pan-caspase inhibitor (P<0.001). Caspase inhibition did not affect ROS generation. This study, in a PTEC line, demonstrates that high glucose causes the generation of ONOO-, leading to caspase-mediated apoptosis. Ebselen and a caspase-3 inhibitor provided significant protection against high glucose-mediated apoptosis, implicating ONOO- as a proapoptotic ROS in early diabetic nephropathy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suppression of Par-4 protects human renal proximal tubule cells from apoptosis induced by oxidative stress.

BACKGROUND Oxidative stress is an important inducer of cell apoptosis and plays a key role in the development of renal inflammation. The prostate apoptosis response factor-4 (Par-4) gene was originally identified in prostate cells undergoing apoptosis. Subsequently, Par-4 was found to possess potent pro-apoptotic activity in various cellular systems. However, it remains unclear whether Par-4 is...

متن کامل

High Glucose Increases Metallothionein Expression in Renal Proximal Tubular Epithelial Cells

Metallothionein (MT) is an intracellular metal-binding, cysteine-rich protein, and is a potent antioxidant that protects cells and tissues from oxidative stress. Although the major isoforms MT-1 and -2 (MT-1/-2) are highly inducible in many tissues, the distribution and role of MT-1/-2 in diabetic nephropathy are poorly understood. In this study, diabetes was induced in adult male rats by strep...

متن کامل

Inhibition of SGLT2 alleviates diabetic nephropathy by suppressing high glucose‐induced oxidative stress in type 1 diabetic mice

It is unclear whether the improvement in diabetic nephropathy by sodium glucose cotransporter 2 (SGLT2) inhibitors is caused by a direct effect on SGLT2 or by the improvement in hyperglycemia. Here, we investigated the effect of dapagliflozin on early-stage diabetic nephropathy using a mouse model of type 1 diabetes and murine proximal tubular epithelial cells. Eight-week-old Akita mice were tr...

متن کامل

Mechanism of Oxidative DNA Damage in Diabetes

OBJECTIVE To investigate potential mechanisms of oxidative DNA damage in a rat model of type 1 diabetes and in murine proximal tubular epithelial cells and primary culture of rat proximal tubular epithelial cells. RESEARCH DESIGN AND METHODS Phosphorylation of Akt and tuberin, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) levels, and 8-oxoG-DNA glycosylase (OGG1) expression were measured in k...

متن کامل

Insulin stimulates SGLT2-mediated tubular glucose absorption via oxidative stress generation

BACKGROUND Ninety percent of glucose filtered by the glomerulus is reabsorbed by a sodium-glucose cotransporter 2 (SGLT2), which is expressed mainly on the apical membrane of renal proximal tubules. Since SGLT-2-mediated glucose reabsorption is enhanced under diabetic conditions, selective inhibition of SGLT2 has been proposed as a potential therapeutic target for the treatment of patients with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 17 8  شماره 

صفحات  -

تاریخ انتشار 2003